Course Code ESE-803	Credit Hours (Th-Pr) 3-0	Photovoltaic Devices (Core)	Contact Hrs/Week (Th-Pr) 3-0	Total Contact Hrs (Th-Pr) 45-0
---------------------------	--------------------------------	--------------------------------	---------------------------------------	--

Course Outline:

An introduction to Photovoltaics, the physics behind the technology, the devices and practical applications. Traditional and renewable energy sources, thermodynamics and general energy related issues. Photovoltaic cells, semiconductor physics, solar cell structures, their principle of operation, design and fabrication. Photovoltaic systems including power converters and energy storage, residential grid-connected photovoltaic systems.

<u>Eligibility Criteria:</u> B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	PracticalPhotovoltaicsElec	Richard J.Komp	RK	Text
	tricity from solar cell			
2.	THE PHYSICS OF	Jenny Nelson	JN	Text
	SOLAR CELLS			
3.	Solar Cell Device Physics,	Stephen J.Fonash	JF	Referenc
	Second Edition			е
4.	Planning and installing	Deutsche Gesellschaftfür	DG	Referenc
	photovoltaic systems	Sonnenenergie		е

Course Objectives:

Solar cells harness the energy of sunlight and convert it directly into electricity. This course covers factors important in the understanding, design and characterization of solar cells. Students are introduced to a range of laboratory-based and commercial solar cell technologies in this course including silicon (wafer-based) technologies,

thin film technologies, multi-junction, concentrator and third generation concepts and technologies.

Learning outcome:

The course will extend students' existing semiconductor device understanding and provide a sound basis in key practical processes such as solid state diffusion and device contacting.

Topics Covered:

No.	Topics	Text	Contac
		Book	t Hours
1.	Energy : Energy and Role of Photovoltaic, World Energy	RK	4
	Requirement, renewable Energy Sources, Photovoltaic in		
	Energy Supply, Solar PV production and cost		
2.	Core concepts of Solar Cell: Semiconductors as basic	RK	4
	solar cell material, materials and properties, P - N junction		
	and		
	Solar cell. Sources of Losses and prevention.		
3.	Physics of Solar Cell: The basic properties of	JN	4
	semiconductor materials, such as bandgap, charge carriers,		
	mobility, doping, Fermi level, conductivity, recombination		
	and luminiscens.		
4.	Diode Behavior: Analytically calculate the operational flow	JN	6
	and diffusion flow in semiconductor materials and especially		
	for transitions between p-and n-layers. Describe the		
	behavior of a diode and analytically calculate contact		
	potential, depletion zone, electric field strength, charge		
	carrier distributions and current-voltage relationship.		
5.	Optical Process: The optical processes in semiconductor	JN	6
	materials and explain the behavior of light-emitting diode,		
	photo detector and solar cell. Evaluation of new		
	semiconductor materials and components with regard to		

	photo voltaic and electronic applications.		
6.	Solar Cell technologies: Crystalline Cells: Mono-	RK	6
	crystalline and poly – crystalline cells, Metallurgical Grade		
	Si,Electronic Grade Si, wafer production, Mono – crystalline		
	Si Ingots, Poly – crystalline SiIngots, Si – wafers, Si –		
	sheets, Solar grade Silicon, Si usage in solar PV,		
	Commercial Sisolar cells, process flow of commercial Si cell		
	technology, process in solar cell technologies, Sawing and		
	surface texturing, diffusion process, thin film layers, Metal		
	contact		
7.	Thin Film Cells: Advantage of thin film, thin film deposition	RK	4
	techniques, Evaporation, Sputtering, LPCVD and APCVD,		
	Plasma Enhanced, Hot Wire CVD, closed space		
	sublimation, Ion Assisted Deposition. Substrate and Super-		
	state configuration, Amorphous Si Solar cell technology		
8.	Concentrators and PV Modules: Concentration:	RK	4
	Advantages and disadvantages, Series Resistance		
	optimization, Concentrating techniques; tracking / non-		
	tracking systems, High concentration solar cells		
9.	Solar Photovoltaic Modules: Solar PV modules: Series	RK	4
	and Parallel connections, Mismatch between cell and		
	module,		
	Design and structure, PV module power output, Electrical		
	Storage: Battery technology, Batteries for PV systems, DC -		
	DC converters, Charge Controllers, DC – AC inverters;		
	single phase, three phase, MPPT.		
10.	Planning & Design: Planning Procedure, System capacity	RK	3
	and Energy Demand, Site selection, System concept,		
	Module selection and PV Generator, Selection and sizing of		
	cables, Standalone		
	System; Battery sizing, Charge Controller and Inverter, Grid		

Connected Systems; Selection and inverter sizing,	
Generator Junction Box and DC Main Switch, Safety	
Measures, Grid Interface	